Characterizing Voltage-Dependent Conformational Changes in the ShakerK+ Channel with Fluorescence

نویسندگان

  • Albert Cha
  • Francisco Bezanilla
چکیده

We examined voltage-dependent conformational changes in three specific regions of the Shaker potassium channel with site-directed fluorescent labeling: the fourth transmembrane segment (S4), the second transmembrane segment (S2), and the putative pore region. The fluorescence changes displayed distinctive properties that correlate with gating, activation, and slow inactivation of the channel. The fluorescence signals measured near the S2 and S4 segments suggest that the S2 segment may undergo voltage-sensitive conformational changes that precede those in the S4 segment. In contrast, fluorescence changes in the pore correlated with the voltage dependence and time course of ionic activation and slow inactivation. Spectroscopy indicated that the mechanism of fluorescence change involves voltage-dependent quenching of the probe in an aqueous environment by other parts of the protein.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage-dependent conformational changes in human Ca(2+)- and voltage-activated K(+) channel, revealed by voltage-clamp fluorometry.

Large conductance voltage- and Ca(2+)-activated K(+) (BK(Ca)) channels regulate important physiological processes such as neurotransmitter release and vascular tone. BK(Ca) channels possess a voltage sensor mainly represented by the S4 transmembrane domain. Changes in membrane potential displace the voltage sensor, producing a conformational change that leads to channel opening. By site-directe...

متن کامل

Voltage-Dependent Proton Transport by the Voltage Sensor of the ShakerK+ Channel

In voltage-dependent ion channels, pore opening is initiated by electrically driven movements of charged residues, and this movement generates a gating current. To examine structural rearrangements in the Shaker K+ channel, basic residues R365 and R368 in the S4 segment were replaced with histidine, and gating currents were recorded. Changes in gating charge displacement with solvent pH reveal ...

متن کامل

Fast and Slow Voltage Sensor Movements in HERG Potassium Channels

HERG encodes an inwardly-rectifying potassium channel that plays an important role in repolarization of the cardiac action potential. Inward rectification of HERG channels results from rapid and voltage-dependent inactivation gating, combined with very slow activation gating. We asked whether the voltage sensor is implicated in the unusual properties of HERG gating: does the voltage sensor move...

متن کامل

Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain.

Understanding the activation mechanism of Cys loop ion channel receptors is key to understanding their physiological and pharmacological properties under normal and pathological conditions. The ligand-binding domains of these receptors comprise inner and outer beta-sheets and structural studies indicate that channel opening is accompanied by conformational rearrangements in both beta-sheets. In...

متن کامل

Kinetic Relationship between the Voltage Sensor and the Activation Gate in spHCN Channels

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are activated by membrane hyperpolarizations that cause an inward movement of the positive charges in the fourth transmembrane domain (S4), which triggers channel opening. The mechanism of how the motion of S4 charges triggers channel opening is unknown. Here, we used voltage clamp fluorometry (VCF) to detect S4 conformational c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 19  شماره 

صفحات  -

تاریخ انتشار 1997